Weak 2-cosemisimplicial objects in a 2-category and deformations of a pseudofunctor

نویسنده

  • Josep Elgueta
چکیده

In this paper we take up again the deformation theory for K-linear pseudofunctors initiated in [4] with a two-fold purpose. Firstly, we introduce the notion of weak 2-cosemisimplicial object in a 2-category and show that the deformation complex X•(F) introduced in [4] can be obtained from one such object in the 2-category CatK of small K-linear categories. In doing this, we describe a family of graphs, conjecturally the 1-skeleta of a new family of convex polytops we call the cosemisimplihedra, and related to the higher-order cosemisimplicial identities. Secondly, using this construction and a generalization to the context of K-linear categories of the deviation calculus introduced by Markl and Stasheff for K-modules [8], we prove that the obstructions to the integrability of an n-order deformation of F indeed correspond to cocycles in the third cohomology group H(X(F)), a question which remained open in [4].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Van Kampen theorems for toposes

In this paper we introduce the notion of an extensive 2-category, to be thought of as a “2-category of generalized spaces”. We consider an extensive 2-category K equipped with a binary-product-preserving pseudofunctor C : K op → CAT, which we think of as specifying the “coverings” of our generalized spaces. We prove, in this context, a van Kampen theorem which generalizes and refines one of Bro...

متن کامل

Representation of $H$-closed monoreflections in archimedean $ell$-groups with weak unit

 The category of the title is called $mathcal{W}$. This has all free objects $F(I)$ ($I$ a set). For an object class $mathcal{A}$, $Hmathcal{A}$ consists of all homomorphic images of $mathcal{A}$-objects. This note continues the study of the $H$-closed monoreflections $(mathcal{R}, r)$ (meaning $Hmathcal{R} = mathcal{R}$), about which we show ({em inter alia}): $A in mathcal{A}$ if and  only if...

متن کامل

Pseudofunctorial behavior of Cousin complexes on formal schemes

On a suitable category of formal schemes equipped with codimension functions we construct a canonical pseudofunctor (−)♯ taking values in the corresponding categories of Cousin complexes. Cousin complexes on such a formal scheme X functorially represent derived-category objects F by the local cohomologies H codim(x) x F (x ∈ X) together with “residue maps” from the cohomology at x to that at ea...

متن کامل

Residues and Duality for Cousin Complexes

We construct a canonical pseudofunctor ( ) on the category of finite-type maps of (say) connected noetherian universally catenary finite-dimensional separated schemes, taking values in the category of Cousin complexes. This pseudofunctor is a concrete approximation to the restriction of the Grothendieck Duality pseudofunctor( ) to the full subcategory of the derived category having Cohen-Macaul...

متن کامل

The 2-category of Weak Entwining Structures

A weak entwining structure in a 2-category K consists of a monad t and a comonad c, together with a 2-cell relating both structures in a way that generalizes a mixed distributive law. A weak entwining structure can be characterized as a compatible pair of a monad and a comonad, in 2-categories generalizing the 2-category of comonads and the 2-category of monads in K , respectively. This observa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003